A-level Physics is difficult. If you don’t believe me, see my previous blog post “Mirror, Mirror on the wall, which is the hardest A-level subject of them all?”

Our current entry requirements to study A-level physics in the sixth form are a grade B in GCSE Maths and grade B in GCSE Physics (or grade B in Core & Additional Science). While at first these grades might seem reasonable to study a science at A-level, you need to remember that students **only need to score between 45 & 50% of the marks in these GCSE papers to come out with a couple of grade Bs **– a very worrying statistic!!

While we do set, and expect, our future Year 12 students to do work over the summer holidays (before starting in September), inevitably there are large gaps in their knowledge base that need to be plugged. During the first 6 weeks of the course we spend a great deal of time trying to get students up to speed, setting large quantities of homework along the way so students know what to expect from the outset. Even so, we have a very high drop out rate going from Year 12 into Year 13 (~50%) which is not unusual for all science A-level subjects. We have just started teaching the new (terminal) A-level science syllabus to our Y12 students which have **even more content** that last year, so 2015-16 is certainly going to be even more challenging than the previous year.

As such, it is my goal this year to identify problem Year 12 students early on in the academic year (those with lower than expected progress) and put intervention strategies in place for them before things become unrecoverable in the summer when our students sit their AS-level examinations.

Everyone likes a list…….so, here are my top 10 A-level Physics intervention strategies (in no particular order):

**Day one**Get to know your new Year 12 students, their strengths and their weaknesses. A great blog post by misslowephysics suggests getting all students to fill out an A-level questionnaire (see below).

The advantage of getting your students to fill this in is that you can immediately see if students are taking complementary A-level subjects (such as Chemistry, Maths, Further Maths) and which students are not. Straight away you will get a feel for which students may need more support from you at the outset. You also will get a good feeling for their confidence in mathematics – an essential skill for A-level physics (which is often overlooked by the students).

.**Essential catch-up material**

As mentioned previously, if students ‘just’ meet the entry criteria to study A-level physics, then they could be missing up to 50% of the prerequisite knowledge needed for the course. To this end I strongly encourage them to purchase (and read!)the following catch-up guides:-> Head Start to A-level Physics (£4.79), and

-> Essential Maths Skills for A-level Physics (£7.50), OR

-> Maths Skills for A-level Physics (£9.99)**FREE Physics resources**Students often feel confused as to where to go if they need extra help and resources on the subject (in addition to their textbooks and physics teacher). To this end at the start of Year 12 we give each of the students the following letter:”Dear Y12 physicist,Welcome to A-level Physics! This course will be hard but extremely rewarding! In order for you to succeed in this course your physics teachers have put together some free resources for you to follow.

**REMEMBER – for every hour spent in the classroom, you should spend AT LEAST another hour at home doing background reading, making extra notes AND completing questions from your textbook to check your understanding (answers in the back).**__This work is IN ADDITION to any homework set by your teachers__.”

……the letter goes onto**list all the free A-level physics stuff available on the web**. Please click here for the most recent draft.**Interactive ALPS spreadsheet**

The Advanced Level Performance System (or Alps) accounts for over 70% of all A-levels taken. The reports generated by Alps allows schools to compare 93 different A-level subjects directly against other schools drawing from over from 2,500 datasets (at time of writing). The methodology calculates a Value-Added score for each A-level department using students KS4 average points scores and their (exam) grades in your particular subject as an input. The Value-Added score that is generated can be compared to other schools in the Alps dataset to return your subject’s percentile and its associated Alps band 1 (blue=underperforming) to 9 (red=overperforming).While the methodology has been designed to collate each student’s Value-Added score and return an overall Alps band for a given A-level subject,**in principle**you can return an Alps band for each student aswell. By doing so you can immediately see which students are underperforming and need strategic intervention. See screenshot below.**Personalised physics revision guides**(aka the physics bible)

Some of my A-level students are particularly bad when it comes to organising their loose paper notes. Be it chronologically, by topic, by indexing the syllabus, by subject teacher*etc etc*. This therefore make it virtually impossible for these students to revise effectively come their mocks or summer exams. Not only this, but some students don’t even make use of their physics textbook (surely not you gasp!).In order to kill two birds with one stone we stole a simple but effective idea from our Chemistry colleagues; give each student an exercise book to be used for their*best notes*.

At the end of each topic the students must write a summary of all the key points, diagrams, equations and calculations for that particular chapter of the textbook just covered. They need to use the specification to check they have covered all the key aspects and show wider reading and worked examples where appropriate. Of course some students are better than this than other so we also provide a more structured breakdown for our students when needed. This book is then marked after/during every topic and written feedback given which the students must respond to. Whilst a very simple idea which the students initially disliked – they are all starting to see the value in this process and realise that they will essentially have a personalised physics revision guide by the time they get to their summer exams.

.**Three act science**

I am also in the process of using three-act-science to engage with my [weaker] students. Dan Meyer, a former high school maths teacher and original inventor of this concept, often felt that his maths students had the following issues:-> Lack of initiative

-> Lack of perseverance

-> Lack of retention

-> Aversion to word problems

-> Eagerness for the formulaHe realised that they way to rectify this was to give his students interesting open ended Maths problems – see his now famous three acts of a mathematical story or March 2010 TED talk. More recently, Neil Atkin used this idea to come up with an alternative approach to science teaching; three-act-science. In essence we can get our [weaker] students to engage more with [physics] problems using a 3 stage strategy (called acts). As an example, consider teaching the stability features of objects.**Act 1: The hook**. This should**engage every learner**. There should be**few demands on either the language or the maths**. It should ask for a little and offer a lot….see clip below on stability:**Act 2: The explore**– students talk through their ideas. How might this link to other things I have learnt or seen before? Could any of my initial beliefs be wrong? What could we do to get extra information?**Act 3: The reveal**– show students the outcome. Does this match their predictions? How does this link in with the A-level curriculum? Answer to the clip can be found here.**Lots and lots of exam questions!!**Previous experience has shown me that while our physics students often feel that they ‘get’ a topic, when it comes to the public examinations they often become unstuck because the physics concept has been presented to them in an unfamiliar context. To try to mitigate this, at the start of a topic I like to give out a large range of previous past paper questions. I tell the students to look through all the questions and identify anything that may look familiar to them from their science GCSE. At first very little is highlighted and of course they cannot answer any of the questions. Next, every couple of lessons, I ask them to get out their questions again and go through them a second, third and fourth time. Usually by the third+ time students start to feel that can answer some of the questions, until at the end of the topic the majority of the questions should be accessible to them. While I will then take in and mark and give feedback to their answers, every now and again I will ask the students to come up to the whiteboard and work through some of the more tricky questions. When they have finished I will ask the next student how the answer could be improved, and so on and so on until we have iterated all the way to the correct solution. Finally I will ask them to ‘guess’ what the markscheme would award marks for and inevitably they get the majority of the marks correct because they are critically evaluating each others answers & ideas through this process.

.**Maths revision classes**By far and away the most pressing issue when it comes to students underachieving in A-level physics is not have the necessary maths skills to cope with the A-level curriculum (see my blog post on formula triangles). While there is no pre-requisite to study A-level Maths in order to study A-level Physics, the reality is that the majority of students who make it into Year 13 study both. This means that students in Year 12 who aren’t taking any other mathematical A-levels (such as Maths, Further Maths, Chemistry

*etc*) need extra support from us. My plan this year is to put on regular extra maths support classes for these students in order to get them up to speed in these problem areas.

.**Extra-curricular HAB club**Apart from covering the physics curriculum, I really wanted to inspire my students interest in physics outside in the *real* world. This year we have partnered up with European Astrotech to run a High Altitude Balloon (HAB) project with all of our physics sixth formers. This is an educational project for students to gain first-hand experience of planning and designing their own scientific experiments which will be launched on a high altitude balloon from the school field to the edge of space, followed by the collection, analysis and presentation of their results. A short clip produced by European Astrotech can be found below.

https://youtu.be/06NfiQ7rdicThis project has captured the imagination of ALL the physics students and got them talking about this subject outside of the classroom. Even my weaker students are really fired up by the possibilities that this project offers which I hope will spill over into their more formal A-level lessons!**Teacher CPD**On Saturday 11th June 2016 I’ll be attending the research Ed Maths and Science conference in Oxford, a one-day conference focused on Maths and Sciences educational research. There is a huge array of teachers, researchers and other leading figures in Maths and Science to talk about the

**evidence**behind what really works when teaching these subjects in the classroom. I’m really interested in the talks on gender balance in physics and intervention strategies for A-level physics students as used by other leading practitioners. A full list of speakers can be found here.